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A method  for  calculation o f  concentration polarization in separation of  mul t icomponent  mixtures by 

boromembranes with allowance .for the mutual influence of the components in the process of  molecular 

d i f fus ion  is described. Equa t ions  are derived for  the concentra t ion  po lar i za t ions  o f  binary and  

mult icomponent mixtures under unsteady conditions. 

Baromembrane installations (retroosmotic, ultrafiltration plants) operate either in a continuous regime, in 

which the initial mixture is pumped only once through series apparatuses with the concentrate and the permeate 

being removed continuously, or in a semicontinuous regime, in which the processed solution is circulated, the 

permeate is continuously selected, and the concentrate is removed from the system periodically until the required 

degree of saturation is reached. In the operation of semicontinuous-action plants, the composition of the initial 
mixture changes with time from some initial value to the required one. 

The separation of liquid mixtures by baromembrane methods depends greatly on the concentration 
polarization, which consists of an increased permeate concentration near the membrane surface as compared to the 

flow core. In the general case, the adverse effects of this phenomenon comprise a decrease of the moving force, 

formation, in some cases, of a gel layer on the membrane surface, which leads to an abrupt increase in the 

hydrostatic resistance to transfer, and changes in the properties and separation characteristics of the membranes. 

Numerous theoretical studies of concentration polarization describe the behavior of binary mixtures consisting of 

a solvent and a permeate [ 1 ]. We investigate the regularities of concentration polarization in the case of separation 
of multicomponent mixtures under unsteady diffusion conditions in a pregel regime within the framework of a film 

model for a semicontinuous process. 

We select a membrane element with respect to whose length and width the concentration of the initial 
mixture is constant, while the composition of the latter changes with time and is prescribed by some function. 

Assume that diffusion proceeds only along the normal to the membrane surface. At first we consider the 

concentration distribution of components in a diffusion layer for a binary mixture 

dc _ D 02c + v 0 O__cc (1) 
dt Ox 2 dx ' 

c (l, t) = g (t), (2) 

v Oc(O, t )  + DOC(O't )  = 0  (3) 
Ox 

c ( x ,  0 )  = c o . ( 4 )  
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Boundary condition (2) shows that the concentration of the initial mixture changes with time (increases in our 

case). Boundary condition (3) expresses the material balance near the membrane surface: the amount of permeate 

transferred to the membrane surface by convection is equal to that of the permeate carried away from the membrane 

surface by molecular diffusion (the membrane transmits only the solvent). Thus, boundary condition (3) 

mathematically formulates the origin and development of concentration polarization. Initial condition (4) indicates 

that the substance concentration at the initial moment is constant along the diffusion path. Equations (1)-(4) are 

derived under the assumption that the rate of solvent filtration through the membrane does not change with time. 

The solution of Eq. (1) with boundary (2), (3) and initial (4) conditions is sought in the form ( 2) 
o x vo 

c (x , t )  = D -  lv  0 g ( t )  1 - + g ( t ) - [ +  exp - ~ x - ~ - ~ t  v ( x , t ) .  (5) 

Substituting (5) into Eqs. (1)-(4), we arrive at 

Ov _ D 02v = F (x ,  t) (6) 
Ot dx 2 ' 

where 

where 

v (l, t) = 0 ,  (7) 

v o ov  (o, 0 
T v (o, t) + D 0-----7-- - 0 ,  (a)  

v (x, 0) = ~, ( x ) ,  (9) 

Ot O - l~0 + g ( t)  lv  0 _ D x exp - ~  + -~-~) 

~p (x) = c o - g (0) -~ /--~'0) exp ~-~--~-] . 

The solution of Eqs. (6)-(9) can be represented in the form of the series 

v (x, t) = ~ 7". (t) x .  (x ) ,  
n= l  

X n (x)  sin (;tnX) 2D 2 = - cos 0~x)  
v0 n 

are the eigenfunctions of the corresponding homogeneous problem, and the eigenvalues are found by solving 

numerically the equation 

2D 
tan (;tn/) = -~o An" 

Performing series expansion of F ( x ,  t) in the eigenfunctions X n ( x ) ,  we obtain the Cauchy problem for 

determination of Tn( t )  
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d r  n (t____~) + D)t2nr n (t) = fn (t),  (10) 
dt 

where 

l ,  [ ] 
T n (0) = ~ fo ~ (x) sin (;tnx) - 219Vo ;tn cos Otnx) dx  = a n , (11) 

Jn 
= 2  1 +  v0 } 

: _ 2 . 2  
sin (21ln/) 4D A n + 

2 
4/l n v 0 

D 
~0 [ c o s  (2,ln/) - 11. 

The general solution of Eqs. (10) and (11) is written in the form 

t 

T n (t) = a n exp ( -  D~2nt) + f exp [ - ~ z  n ( t -  ~)~:,~ (r) d 1 ,  
o 

where 

1, [ ] 
-fn (0  = f~  f F (x, r) sin Qlnx ) - 2 D  Jl ~cos :~;i~,n,z ~ 

0 v0 n 

Thus, the complete solution of problem (1)-(4) is 

c ( x ,  t ) =  D-Dg(t)vol ( 1 - / )  + g ~ 0 : / ' r  

v0 v0 
+ exp - ~-~ x - ~ a n exp ( -  D,I~0 ,. 

n = l  

sin (2nX) - -~0 2n cos (2nX) + 

.=t  -~-0 2. cos (:..x) f exp [ ( -  D,~2n) (t - r} l fn{t )  dr . 
0 

while the time variation of the permeate concentration near the membrane surface (x --- 0) 

(12) 

12)f ( c(O, t ) -  Dg( t )  _ Vo 21))t I 2 / ~ : ~ 0  l +  exp ~ t  x ~ a n - e x p ( -  D)t,,t) + 
n = 1 VO n) 

- -7 - -2n  f exp [ -  D)t2n (t - t)  l fn  (t) dr . (13) 
0 

To characterize the concentration polarization in a multicomponenl mixture, we use the generalized Fick 
equation to describe molecular diffusion of permeates from the membrane surface into the flow core: 

t! 

M i  = - E D i k V C k ,  i = 1,  2 . . . . .  n - -  I , ( 1 4 )  
k=l  

or in matrix form 

(M) = - [D] (Vc). (15) 
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It follows from Eqs. (14) and (15) that the diffusion flow of the component is proportional to the  concentrat ion 

gradients of all independent  components. The interrelation between the diffusion coefficients in Eqs. (14) and (15) 

and the diffusion coefficients in binary solutions is expressed by the relation 

- l  
[DI = [BI , 

where the elements of the matrix [B] are determined as follows [2 ]: 

ci ~ Ck 
Bii = Di---~n + k= I Dik , i = 1, 2 . . . . .  n -- 1 ; 

B i j =  - c  i DO , i , j =  1,2  . . . . .  n -  l ,  i ~ j .  

Proceeding from Eqs. (14) and (15), Eq. (1) can be written on the form 

OC i n -  1 O2Ck Oc i 
~ = ~ ,  D i k ~ + v o - - ,  i =  1 ,2  . . . . .  n -  l ,  
Ot k= 1 Ox 2 Ox 

(16) 

or in matrix form 

= 0 (c) (17)  0(c) to] ~ + v o  
Ot Ox 2 Ox 

Equations (16) and (17) differ from (1), which was written for a binary mixture,  in its "coupled" form, 

i.e., the presence of nonzero cross coefficients in the matrix of real coefficients of multicomponent diffusion. 

Assuming [D] to be a constant matrix composed of positive elements, we diagonalize [D] using the modal matr ix 

[P] and the reciprocal modal matrix [P ]-1 

~2 

[P1-1 [DI [PI = = % .  

After multiplying all terms of Eq. (17) by [ p ] - l ,  we arrive at 

o (~) =% o 2 (~) + ~o o (~-) 
Ot J Ox 2 c)x 

where (b) = [P ]-  ~ (c). 

Having performed similar transformations of boundary and initial conditions (2)-(4),  we obtain a sys tem 

of equations for the concentration distribution of the components in a diffusion layer for a multicomponent mixture 

in the following form: 

- , u  i + V o - - ,  i =  1,2 . . . . .  n -  l ,  
Of Ox 2 Ox 

~ ( l ,O=~( t ) ,  i = 1 , 2  ..... n - l ,  (19) 
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o~, (0, 0 
v0~ (0, t) + / ~ i  0--------~- - o ,  i = l ,  2 . . . . .  n - l ,  (20)  

(x,O)=~Oi, i= 1,2 ..... n- I. (21) 

Equations (18)-(21) are similar to (1)-(4); therefore, the solutions of (10) and (11) obtained above can 

be used to descr ibe  the behavior  of the i-th component in "pseudoconcentrations." A transition from 

pseudoconcentrations to actual concentrations is accomplished by the equation 

(c) = | e l  (b ' ) .  

The concentration polarization for binary mixtures can be characterized by the ratio [3 ] 

% 

Cb 

which is valid provided that the concentrations of the permeate near the membrane surface and in the flow core do 

not change with time. In a sere|continuous regime of operation of baromembrane installations, the permeate 

becomes accumulated in the treated solution and, as a consequence, the substance concentration near the membrane 
surface changes. In this case, it is reasonable to introduce the following function to quantitatively describe the 

concentration polarization in separation of binary mixtures: 

(t) (22)  
K(t)  = c (0, t)" 

Generalizing formula (21) to the process of separation of multicomponent mixtures, we arrive at 

gi (t) 
K i ( t ) -  c i ( O , t ) '  i =  1 ,2  . . . . .  n -  1. 

(23) 

Relations (22) and (23) make it possible to evaluate the time variation of concentration polarization in the 

process of semicontinuous baromembrane-aided separation of binary and muir|component mixtures and to find the 
conditions of gel layer formation over the membrane surface for separate mixture components. Moreover, to describe 

the mass transfer of multicomponent mixtures, one can employ experimental data on mass transfer for binary 

mixtures with allowance for direct mutual overlap of flows in diffusional transfer. 

N O T A T I O N  

c(x, t), concentration of the permeate at the point with the x-coordinate at the moment t; x, coordinate; t, 
time; D, molecular diffusion coefficient for a binary mixture; v0, filtration length; l, diffusion path length; g(t), 

concentration of the initial mixture; co, initial concentration of the initial mixture; Xn(t) ,  eigenfunctions; /In, 

eigenvalues, Jn, an, coefficients; M i, flow of the diffusing i-th substance; Dik, molecular diffusion coefficient for a 
multicomponent mixture; [B ], square matrix; |P l, modal matrix; [D1, (c), (c-), matrices of the molecular diffusion 

coefficients in a multicomponent mixture of concentrations and pseudoconcentrations; ~ pseudoconcentration of 
the i-th component;~%, diagonal matrix; Cw, Cb, permeate concentration near the membrane surface and in the flow 

core, respectively; i, j, k, component numbers. 
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